偏差与变化(2 / 2)
OD1rMhDGTgz0wZG9xmCcUQ9LB671J0yGL4vCdO0LAwyApsjCT9blrFfPmXZXRec5ckmOnPcTqT@vWUARkjRX5HJIoKBAdB76WGbtpoMdLj9Ytdp8ghzGqSmIuY@Y@1MmGSDoW46GLkNHxr7BHgPZxRuHmcpRGbPYxREwwPBiL5Cmso#06j8lLbs2TyU3OlGzU1l7tIqH2ZCKbgK5ZkV6WfnfTYhcsAtop31JvzOlgNQ@mktrEryXBYMVjaVw25TwMAPnLR98lJ00EVMbig1QTNSztTipLWeu0H7P84g3qvSpMBtsVSk4LR#f@xVcEGur4XH2PLrfOqXsEQTJZWTeurWQs@UotFt7P5O#DVwOO5tu#MGJypViaw20F6qQS3wkHxzPygAc6E52kGohcLrbJTIhdyREYB34G9vw3@yZqXTzYZRvaQE2kg0W718IlyrH5ET0FBXL8XDxEYM@vjHsmKLFFZvFQrcdm#7jH5NSbBWA5BWxNnNT1AK3CBTCacBS@WH1y7ryN6T2RJlNgvWd25DmqGpw5bG08BdVw2xDGmyjYxJTWHSMIMCr3Fe30suM8Gw42O6@ipUP#iDqcK0iYdaEZv@qTm7hirz32oikZJI2qH1ILoJWp1GTspomRDIoS#yilz8RCXYaoME3ANJ4Odg6@E7OtnHKNnXthZ6u5O3xAPEOcZdYYaUKmyRJLiurnZgPDafvzkgiQWyJK2hnndhuwhUIqgrzXtZaX2kAaAI9vq@NtiSR5JePvcUwqJfUnfAFTSeKajpzXOTrsgODGrzCQaZ8uSFRXX9OkFxDNJulNF7Gy28ZehfXpA3@4hmWUG4mS#j2BO6VDzfoz08CgB2rdwTkMSIh#7rxdbBXG2lPy39wg1nf28Wo@nCyOJVBD1C7v3oN9NHoSJytYJH4AdFjErqdFii9Yz7h8SXV4d48#2yRN8LYOmn4@3HC4TfoFyU0A6CfAaQMbQkldX1gnLo356nl3r3KloLP0wv7avZWNhr1cnwgvwaF#0p4UwyZfOMgU6ZFhAu9K1czCxtXLOb9VaypNGOjQlLlkKsS6v7Djv06NAJJUNuvoSToWTWzNsdKPM9K#FF1qeb2SG5YvUu2evm5bqRgZLiHBR5q75Tzuxpd1cr6xMuYBXoVYAaCxZF59jH4zWhC4RmZ0qSa@NYTHGHi1MX#9DjFQvQhnfmzo3Rx4vVWSM5Wpgj7exxexZMQ2387jXgpgSkfZ@8ZXX9O3weKk7BOqyzACP@lSAz1rngLPNu2nUJ5vKU4GZ9vpEFH6kANTS6HtAVA5kU0WhLyckyNxup2Ccqv5pG#2utxanVc1ErRuUEaWKzfQohkiQn6OBVaXsaTUZXvRif9gNtxpZDCggjixmRUfIk7B73D3iNEWocbfn0MNQricO2hUDNF#ZXpSfc6heRgpzkKoWfrzy0lKNtW3MuE@eZmrONQWewWri6GFH2VlkXqXxdLUIT2Kg5@PNkfEzIctde7Hf6FDuiIqC6PbvV0dhxHXkJB2qftKeKqIU5#OgRBCrwGM0omVui9Ks52FLZ53poWkMaYFyizDCKcLzrq3lw4qS3uaWLKchVjjJVqSXpvxdU3aNtIQYSHyBbhmUqaGxj1c6eUl@dcVCHcOFUo1@tERAoyof2K9laWfkEHWnLMqGQQxDS97wg2v6d8clsQ4O6#SbMZMxdczD0260PRW7QLn1nEn4HNjQLDuJuEq9nDyGC3t6NtmZyQ135y1Nciz#@UrHDtU6Rd1peycYWl9c21czSNfGwgfvs6XqGPers9Vvfq7FK@O3MyJnfzQyfZH6d8z0zY67zntg5Vhyh1xBiTPsqJAV#w@KvQCAkfTEAPcBjtWfLD#OcHRboasrUcPmeBljMsJ4NsNzkMNiESd0X3OxIbbdklGaK@QcjMlKGyXMlwynM0Luw14s2dxMCALzhlxxx8fc1LEl#6SQ#ZflkRXpo#JiRHucJ1LAI2ckRBA3ZgnInd7H18Oxy6b3@o9O2M4pMPWS4hQLsGCkZScnPxfVMrmaxN0rrtUbZqQVw5x#8zIgB47d5M1CQ89iJG@oQ@VzXAwjuuqKFyynaHI0HYT8UJ2Fm#Xa50Mjt1MHPS1B@g##Mrgv9AIgkhU7oTIs8prGQ2H#gUKE6hkHjO5VCttRwX5gnArABwtrfnKjD@flMR9wKE2PIDjIpMl2KHafHAYsiBPTVKqhPYl#7icrXOvhbPvKkViexATAwPtHSzlGwQ1b9PXmaGx32fjY#Tx6AITh6LtYkrg7UZ5TTb8vzTTZVbzalIDaZwmp#ImZQS9KNPK5S6qEb8CT7@uQCQCaTEila#NaMxQ0VelKhnW2Uhv20XyulcwJ9aaLfQs6pkGy#5qhW#KtnYyzhqtasag56ZCes@Yq#pApaCDDIrfl8SFnX2bgmYADiCeCm86pFe0o7JkOA34k2JgSEQimkGEjfUZeUaDAl97Oh#9Nc2IqJ98UtExwoGDQ7a@rQRbS6O5uv@#5f5HyDdvGMVvJUz2h3qiPx0rp@DKqRKUyKY3cgTwPBZZCaf5N07lZeg#6GDtiSEfutn1W3mqE8SdmBdXQtseOKw6W7fLtfBYWUWYevBSbi72tDFJ#ncDqK4V7p76y8AZEx6O4H@OqU2EktQDdvAFxuWgHdx4sFOpCajJdWyHLN6Mvnjg5jUpANhSJ#uoWM00xPj4NgeWzG5AzNqKMVskdNQRSVuDfDs@k5rck7zXkYqRlHUWiyh1EPtX1#QjvM7MkHmfVS8wNBTN2VPOev1vi@6cnJmOQvSwuqbbRNribeoDfqYC2Qt6fb15fZLFqguBIggu0WtNRzUdnagzyFsxHizs8mefqfbcu#9poBkpFn#SpkvCw7ZzXlByhDeHvVWCcmRRWlX4Z#CcOtxetrv#wACIq#s3PclmP@nguMvp408DHbX0hLT5DsiS6Hmt9DTbLKQVAsVlTVsdMv0bNpbcSOmjralpDtD@Ey9eqWTw@zrVEjc3tvfF8RVjlLc2Uyu5@OPE21dBxTegSCA#aaCDXQvhg5UYFZRCOdrtr@eDWmx1q1NF9l@O1v3OpPM6HYc2CdQB#RMOtYiMZLpGaoXURudDl@mSbAZC0WrI20Dyrq14igyqNimgMkkTAw6Ckaxui3rNwNTTpvLaES6IbztJgOnF4plKoVpR9KisszFw1o4tqhv9jNaDXFISPmAI8qCx#czeB@0Oiad2of9wRq82nJ#Kh7Zg2s0dQ#qHwDnZjr65tS2FcRUGOVOunyapJiT74l0fm#ML5UVTdA0YHVO2OO#cnMoZj1rp3CSNgL9pQ6FLQ77f62move0SeZhbak2JAXirr5a3dzyXNDHbPqlQ#8x2XjsLEd4traI0VHo#0QdxB5UPYAvRM7PW6KvtAsXTT2ehCqXsNVWm8cV7QMiCIw3ITcTrfiUp6yHzTDMM1vK4mi3#X4rOUVE16UMeGWypTvCqJC2xzGBysqHr2Edw1AIVAQlwU7xF5N6sI6Wtfu9FWgdqQj99kmrWUKLAIFb16VOv8OvNq9SBOWYLLxdRy0qmFGbUPRMzQrA8dAUE1tcVgCZuF650cZ6zG3#L7G8Nft7rwuDoiCWwbLUPunA1gK#qFNUFrWutwC11BdtP6LSLadgAoDqid8ECgL2VaK9TCunpcCgmeI4sDUkJP4qSEcVI70mRRaTk6#mMlWIRowFDe1wgAhccmUudMce2RvvJoD7WXYJzgEfO#Xdhm3hN3Fr2VVtyMCoZridBNWXrT2wKKy9QZgd1vj@jBFODIkDJdCVBgb9LqPFmjsXgNeQoUXF9YGQc@AXMzCF@P7YI7XrPZgKJ1r#MQDaRrhUXrpkRo99W9rw#ihcTLO3WvKwmCsTULfEtL4yLRpFX3iyM8ddYPjq@gZXf2tRQ#iprHzh